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Abstract

The cosmic ray interaction event generator sibyll is widely used in extensive air shower sim-

ulations. We describe in detail the properties of sibyll 2.1 and the differences with the original

version 1.7. The major structural improvements are the possibility to have multiple soft inter-

actions, introduction of new parton density functions, and an improved treatment of diffraction.

sibyll 2.1 gives better agreement with fixed target and collider data, especially for the inelastic

cross sections and multiplicities of secondary particles. Shortcomings and suggestions for future

improvements are also discussed.
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I. INTRODUCTION

Cosmic ray interactions in the atmosphere can be regarded as high energy fixed target

collisions involving heavy particles. Because of their low intensity, cosmic rays with energies

above 1015 eV can only be studied indirectly through the extensive air showers (EAS) they

initiate in the atmosphere. The analysis of EAS relies on air shower Monte Carlo simulations

which uses hadronic interaction models. At higher energies, where the cosmic ray energy

is beyond the reach of man-made accelerators, hadronic interaction properties have to be

extrapolated. The difficulties in the extrapolation are augmented by the fact that, while

the forward region contains most of the energetics and is important for shower development,

most of the accelerator measurements are made in the central region.

The event generator sibyll [1] is intended for air shower cascade simulations. It is a

relatively simple model that is able to reproduce many features of hadronic interactions in

fixed target and collider experiments. sibyll is based on the dual parton model (DPM) [2–4],

the Lund Monte Carlo algorithms [5, 6], and the minijet model [7–10]. The hard interaction

cross section is calculated according to the minijet model. For hadron-nucleus interactions,

the interaction probability for each nucleon inside the nucleus is calculated based on the

impact parameter distribution. The total interaction cross section is calculated using the

Glauber scattering theory [11]. For a nucleus-nucleus interaction the semisuperposition

model [12] is used to determine the point of first interaction for the nucleons of the projectile

nucleus. The fragmentation region is emphasized as appropriate for air shower simulations.

Versions 1.6 and 1.7 of sibyll have been released and used since the early 1990s. The only

difference between the two is that version 1.7 can have neutral pion interactions, which is

important only for air showers above 1019 eV because at lower energy all neutral pions decay

before they interact.

Several shortcomings of sibyll 1.6 and 1.7 have been identified over the years, such as

(1) the total proton-proton cross section calculated with the parton structure functions rose

faster than what the experimental measurements indicate; (2) multiplicity fluctuations and

average charged particle multiplicity are too small at high energy; (3) diffractive events did

not agree well enough with the available data sets. For these reasons the event generator

was modified and has been available as sibyll 2.1 [13] since 1999.

The most important changes in version 2.1 are in the description of soft interactions
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and diffraction dissociation. In order to allow multiple soft interactions, the eikonal for the

soft interaction is described using Regge theory, whereas in version 1.7 the eikonal for the

soft interactions was energy independent and had the same b dependence (b is the impact

parameter) as used for hard interactions. While in version 1.7 the cross section for diffraction

dissociation is parametrized independently of the eikonal model, a two-channel eikonal model

based on the Good-Walker model [14, 15] is used in sibyll 2.1. In addition, low- and high-

mass diffraction dissociation are treated separately in the new version. However, it should be

kept in mind that diffraction dissociation is still not satisfactorily understood. The parton

structure functions have been updated to agree with the HERA results. Other parameters

were retuned with updated values as well. The multiple soft interaction and new parton

densities give larger multiplicity at high energies and better agreement with data. The

multiplicity distribution has been improved by implementing better the effect of diffraction

dissociation.

The aim of this paper is to describe the current 2.1 version of sibyll to make a reference

of the implemented physics models and ideas available. We will outline the overall structure

and improvements made, within details of the soft interactions and diffraction dissociation.

We compare sibyll with fixed target and collider data, and we show how it performs in air

shower simulations. Finally, we list some remaining shortcomings of sibyll 2.1 and outline

how they can be improved.

II. HADRON-HADRON INTERACTION

A. Basic DPM picture

sibyll 2.1 retains the DPM picture. In the DPM picture, a nucleon consists of a quark (q,

color triplet) and diquark (qq, color antitriplet). Soft gluons are exchanged in an interaction

and the color field gets reorganized. The projectile quark (diquark) combines with the target

diquark (quark) to form two strings. Each string fragments separately following the Lund

string fragmentation model [6].

The fractional energy x of the quark fq(x) is chosen from a distribution of

fq(x) =
(1 − x)α

(x2 + µ2/s)1/4
, (1)

where α = 3.0 and µ = 0.35 GeV is the effective quark mass. The diquark energy fraction
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is then fqq(x) = 1 − fq(x). If particles 1, 2 collide to form strings a and b, the energy and

momentum of the strings are as follows

Ea =

√
s

2
(x1,q + x2,qq) , Eb =

√
s

2
(x1,qq + x2,q) (2)

pa =

√
s

2
(x1,q − x2,qq) , pb =

√
s

2
(x1,qq − x2,q) (3)

To fragment the string, a q-q̄ pair or qq-qq pair is generated at one of the randomly chosen

ends of the string. The new flavor combines with the existing one to form a hadron, and

the remaining (anti)flavor becomes the new end. A primordial pT of equal magnitude and

opposite signs is assigned to the pairs, with a Gaussian distribution where the mean is energy

dependent

〈pT 〉 =

[

p0 + 0.08 log10

( √
s

30 GeV

)]

GeV/c , (4)

with p0 = 0.3 (u, d), 0.45 (s), 0.6 (qq) and
√

s being the c.m. energy of the hadron-hadron

interaction. The energy fraction of each new particle follows the Lund fragmentation function

f(z) =
(1 − z)a

z
exp

[−bm2
T

z

]

, (5)

where a = 0.5 and b = 0.8, mT =
√

m2 + p2
T is the transverse mass, and z is the fraction

of the new particle energy with respect to the parent quark or diquark. The fragmentation

process continues until the remaining string mass is less than a “threshold mass.” The

threshold mass here is defined as the quark masses of the string ends plus the quark/diquark

pair mass plus (1.1 ± 0.2) GeV. The string finishes the fragmentation by forming two final

hadrons.

B. Hard interactions and minijets

Already in the range of collider energies, at
√

s ∼ 100 GeV, the original DPM picture of

just two strings cannot explain what is observed, namely:

1. high multiplicity;

2. increase of mean pT ;

3. high pT jets;

4. rise of central rapidity density.
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These new features can be interpreted as the emergence of hard interactions which become

prominent as energy increases, in the form of minijets. Minijets are described with pertur-

bative QCD, where partons from the colliding hadrons experience hard scattering. Minijets

have a transverse momentum larger than some momentum transfer scale pmin
T ≫ ΛQCD,

where perturbative calculation holds, but smaller than a typically reconstructed collider jet.

The minijet formalism described below is based on Refs. [1, 16] with modifications made in

the new version.

Minijets are perceived as part of the hard interaction described by perturbative QCD.

The cross section is calculated within the QCD-improved parton model in leading order is

σQCD(s, pmin
T ) = K

∫

dx1

∫

dx2

∫

dpT

×
∑

i,j,k,l

1

1 + δk,l
fa,i(x1, Q

2) fb,j(x2, Q
2)

dσi,j→k,l
QCD (ŝ, t̂)

dpT
Θ(pT − pmin

T ) , (6)

where fa,i(x1, Q
2) and fb,j(x2, Q

2) are the parton distribution functions of parton i (j) in

particle a (b). The transverse momentum of the scattered partons is denoted by pT . The

calculation is done for four light flavors. Higher order corrections are accounted for by setting

the factor K=2 and the factorization scale Q2 = p2
T . sibyll 1.7 used parton densities of

Ref. [17] (EHLQ), where the gluon density is extrapolated as g(x) ∼ 1/x at small x. Data

from HERA [18, 19] suggest a steeper increase at low x. sibyll 2.1 uses parton densities

of Ref. [20, 21] (GRV) which scales the gluon density as 1/x1+∆ with ∆ = 0.3 − 0.4. As in

the previous version, Eq. (6) has been calculated separately and is included in the code in

tabular form.

The change in the low-x region affects the minijet cross section substantially at high en-

ergies. The cross section cannot rise without limit at high energies [22, 23]. If the number of

gluons times the transverse resolution scale of hard interaction (∼ 1/p2
T ) becomes compara-

ble to the proton size, nonlinear effects, possibly saturation, cannot be neglected. Another

factor to take into account is the use of collinear factorization approximation in calculating

minijet cross sections, where the transverse momenta of the incoming partons (i, j) should

always be smaller than the transverse momenta of the scattered partons (k, l). This approx-

imation is used to sum the parton densities and only the leading term ln(p2
T ) is considered.

The collinear factorization approximation breaks down for ln(1/x) ≫ ln(p2
T ). The ln(1/x)

term becomes important at high energies and needs to be taken into account [24]. In order

5



to restrict the calculation of the minijet cross section to the region of phase space where the

QCD-improved parton model is expected to be reliable, the following transverse momentum

cut is applied

pmin
T (s) = p0

T + Λ exp

[

c

√

ln(s/GeV2)

]

, (7)

where p0
T = 1 GeV, Λ = 0.065 GeV, c = 0.9. This parametrization follows from the geometric

saturation condition [23]
αs(p

2
T )

p2
T

· xg(x, p2
T ) ≤ πR2

p , (8)

where αs is the strong coupling constant, g(x, p2
T ) the gluon density, and Rp is the ef-

fective radius of a proton in transverse space. The scale Q2 = p2
T is assumed. In the

limit ln(1/x), ln(Q2/Λ2) → ∞ (double leading-logarithmic approximation) the steeply ris-

ing gluon density g(x, Q2) can be written

xg(x, Q2) ∼ exp

[

48

11 − 2
3
nf

ln
ln Q2

Λ2

ln
Q2

0

Λ2

ln
1

x

]
1

2

∼ 1

x0.4
, (9)

with Λ being the QCD renormalization scale and nf is the number of quark flavors. The

functional form of Eq. (7) follows from inserting Eq. (9) in Eq. (8), however, the parameters

in Eq. (7) cannot be derived directly from first principles.

sibyll 1.7 had a constant cutoff at pmin
T =

√
5GeV. Using modern parton

density parametrizations one cannot obtain a satisfactory description of the proton-

proton/antiproton cross sections with a transverse momentum cutoff that is energy-

independent. The pmin
T values for both versions are shown in Fig. 1.

The minijet cross section quickly rises to exceed the total cross section. This is interpreted

as the collision forming more than one minijet. The average number of hard interactions

nhard occurring at energy s and at impact parameter b is [9]

nhard(b, s) = A(b) σQCD(s) , (10)

where A(b) is the profile function for the hadron-hadron collision. The baryon and meson

profile functions follow those of Refs. [10, 25] and are given in Appendix B. Following the

convention given in Ref. [26], where the basic equations are in Appendix A, the inelastic

cross section is

σinel =

∫

d2b
[

1 − e−2χ(b,s)
]

, (11)
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FIG. 1: Minimum transverse momentum (pmin
T ) required for the collision to qualify as a hard

scattering. sibyll 1.7 had a constant minimum at
√

5 GeV, whereas this has been modified to

change with
√

s in version 2.1.

where the eikonal is

χ(b, s) = χhard(b, s) + χsoft(b, s) =
1

2
nhard(b, s) +

1

2
nsoft(b, s) . (12)

The number of soft interactions is defined analogously to the hard one nsoft(b, s) =

Asoft(b)σsoft(s). The soft part of the eikonal is discussed in the following subsection.

The hard part of the eikonal is interpreted as having a probability of exp[−nhard(b, s)] for

no minijet production at energy s and impact parameter b. Equation (11) can be reorganized

as

σinel =

∫

d2b
{

1 − e−nhard(b,s) + e−nhard(b,s) − e−nhard(b,s) e−nsoft(b,s)
}

=

∞
∑

N=1

σN +

∫

d2b e−nhard(b,s)
[

1 − e−nsoft(b,s)
]

, (13)

where

σN =

∫

d2b
nhard(b, s)

N

N !
e−nhard(b,s) (14)

is the cross section for production of N pairs of minijet. This interpretation follows from

the Abramovski-Gribov-Kancheli [27] cutting rules, where σN is the term with exactly N

cut parton ladders, summed over all uncut ladders [28]. The probability distribution for
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FIG. 2: Minijet production, with the energy fraction carried by the minijets (left panel) and the

average number of minijets produced (right panel) over a range of
√

s.

obtaining N minijet pairs is

PN =
σN

σinel
, (15)

and the mean number of minijet pairs produced per interaction is

〈N〉 =

∞
∑

N=0

N PN =
σQCD

σinel
. (16)

The contribution of minijets to the overall particle production for a p-p collision is shown

in Fig. 2, where the energy fraction carried by the minijets and mean number of minijets

produced are shown as a function of c.m. energy. Minijets start becoming important at
√

s ≈ 1000 GeV.

Each minijet pair is treated as two strings stretched between two gluons. In order to

fragment the jets, a q-q̄ pair is generated at each end, and a leading particle at each end is

created. Then the string fragments in the standard way. The fraction of energy going into

the minijet from each hadron 1, 2 (x1 an x2) is obtained by selecting x from the effective

parton density function [29]

f(x) = g(x) +
4

9
[q(x) + q̄(x)] . (17)

The code uses the approximation that for small transfer momentum the cross sections for

g-g, q-g and q-q scattering are proportional to t−2 and are in ratio 1 : 4/9 : (4/9)2. The
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transverse momentum follows
dσ

dt̂
∝ 1

t̂2
, (18)

where t̂ is the four-momentum transferred squared Mandelstam variable, and t̂ >
(

pmin
T

)2
.

We emphasize that the full parton structure functions of the u, d, s, c quarks and gluon are

used for the calculation of the hard cross section. The above approximation is made only

when sampling partonic final states and the parton density is parametrized in this simple

way by adding quarks and gluons with the approximate weights.

C. Soft interactions

sibyll 1.7 has a very simple, energy-independent form of soft contribution to the eikonal

χsoft = 1
2
CA(b), having an impact parameter profile function identical to that of the hard

counterpart, and C = 123 GeV−2 is chosen to reproduce the low energy inelastic cross section

of 32 mb. Only one soft interaction is permitted, and the hard-soft interaction division was

energy-independent at pT =
√

5 GeV. The energy left over after the production of minijets

was shared by two strings connecting the valence quarks of the projectile and target.

In version 2.1, the energy-dependent pmin
T (s) allows a larger range of phase space for soft

interactions. The eikonal form of χsoft = 1
2
Asoft(b)σsoft(s) is kept. We adopt some aspects of

Regge theory in order to accommodate multiple soft interactions. Inspired by Regge theory

[30] the energy dependence of σsoft is taken as sum of two power laws, one term for Pomeron

exchange and another term for Reggeon exchange [31]

σsoft(s) = X

(

s

s0

)∆eff

+ Y

(

s

s0

)−ǫ

, (19)

The index ǫ for Reggeon exchange at low energy is expected to be very similar to the one

found in fits by Donnachie and Landshoff [31]. The parameter ∆eff , in contrast, depends on

the subdivision of the Pomeron term into soft and hard contributions and is hence a function

of the transverse momentum cutoff (7). Here we implicitly assume that minijets form the

hard part of the Pomeron [32].

The parameters X, Y and ǫ and ∆eff are determined by fitting the measured total, elastic

and inelastic cross sections for p-p and p-p̄ interactions. Based on the GRV parton densities

[20, 21] ǫ ≈ 0.4 and ∆eff ≈ 0.0245 are found.
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FIG. 3: Geometric interpretation of a hard interaction (left) and soft interaction (right).

In the following we describe soft interaction by extrapolating the picture of hard interac-

tions into the domain of low momentum transfer, in which this picture cannot be justified

within perturbative QCD. Only comparison of the corresponding model predictions with

data can later prove this description as useful.

While hard interactions are approximately pointlike in character, soft interactions involve

a larger transverse interaction area. The low pT of the partons in a soft interaction spreads

out the interaction area (from the uncertainty principle ∆p∆b ∼ 1), as opposed to a high pT

event which localizes the collision to a small region. The geometry of hard and soft inter-

actions in impact parameter space is schematically shown in Fig. 3. The energy-dependent

increase of the interaction region of soft interactions has to be taken into account in the soft

profile function of the hadron-hadron collision

Asoft
yz (s,b) =

∫

d2b1 d2b2 d2b3 Ay(b1) Az(b2) Asoft(s,b3) δ(2)(b1 − b2 + b3 − b) , (20)

where the profile function Ay/z is analogous to the hard interaction case. The fuzzy area of

the right hand diagram in Fig. 3 is represented by Asoft(s,b3), which is parametrized as a

Gaussian with a energy-dependent width

Asoft(s,b3) =
1

4 π Bs(s)
exp

[

− |b3|2
4 Bs(s)

]

, (21)

with

Bs(s) = B0 + α′(0) ln

(

s

s0

)

. (22)

In the limit of Bs(s) → 0, Asoft(s,b3) becomes a delta function and Eq. (20) becomes equal

to the hard profile function.
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In order to calculate Eq. (20), an exponential form factor which corresponds to a Gaussian

shape in transverse space is used for the proton or meson profile function Ay(b) as a first

estimate, using data to fit the parameters. For a proton-proton collision, this yields

Asoft
pp (s,b) =

1

4 π (2Bp + Bs(s))
exp

[

− b2

4 (2Bp + Bs(s))

]

, (23)

where Bp characterizes the transverse size of a proton and is fitted to data.

For generating the string configurations in inelastic events, the number of soft (Ns) and

hard (Nh) interactions is sampled from (see also [33])

σNs,Nh
=

∫

d2b
[nsoft(b, s)]

Ns

Ns!

[nhard(b, s)]
Nh

Nh!
e−nhard(b,s)−nsoft(b,s), (24)

with the inelastic cross section given by

σinel =
∑

Ns+Nh≥1

σNs,Nh
. (25)

The probability distribution Eq. (24) is tabulated during initialization of sibyll and later

used to draw event configurations.

In analogy to hard interactions, soft interactions are simulated by a pair of gluons which

are fragmented the same way as a minijet pair. Thus, there is one valence quark string pair

and ns − 1 gluon pairs. The only difference is the lower transverse momentum, see Eq. (4),

and the distribution of the momentum fractions of these gluons, which are sampled from

an 1/x distribution. This distribution corresponds to the one expected for a scenario of

saturated gluon density in central collisions. A minimum mass of msoft = 1GeV is required

for strings between sea quarks to regularize the singular part of the distribution and to

ensure applicability of string fragmentation. One of the multiple soft interactions always

involves the valence quarks and the momentum fractions are then sampled from Eq. (1).

Implementing multiple soft interactions affects the model predictions at intermediate

energy, which can be seen, for example, in the inelastic and total cross sections between
√

s = 50 − 900 GeV in Fig. 4.

D. Diffraction dissociation

Diffraction is a collision where there are no quantum numbers exchanged between the

colliding particles. A characteristic feature is a large rapidity gap in the final state. Unfortu-

nately diffraction physics is not satisfactorily understood even on the level of phenomenology.
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A comprehensive description of diffraction can be found in Ref. [34]. We give only a brief

description of the diffraction model used in the new version and put the relevant equations

in Appendix C.

In version 1.7, diffraction was considered part of the inelastic, no-minijet event but was

not otherwise included within the physics framework. The cross sections σdiff were simply 9%

each for forward and backward diffraction and 4% for double diffraction of the σinel (including

minijet production) at 30 GeV, and was assumed to increase with energy as σdiff ∝ ln(s),

with the diffractive event probability Pdiff = σdiff/σinel. With this treatment, however, σdiff

becomes larger than the cross section for inelastic no-minijet events at high energy. Also,

the minijet cross section is a fit to the total inelastic cross section, which includes diffractive

events as well. This resulted in an underestimation of minijet production.

sibyll 2.1 uses the two-channel eikonal model to incorporate diffraction into the eikonals

for the low-mass diffraction dissociation. The procedure is similar to the Good-Walker

model [14] with only a few assumptions made; see also Ref. [35]. Only two states are

distinguished, a nonexcited state and a generic diffractively excited state (denoted with a

⋆) which is a superposition of different low-mass diffractive final states. The cross sections

and relevant equations are given in Appendix C. The high-mass diffraction dissociation is

calculated by extracting the corresponding eikonal function from the soft and hard eikonal

parts. Including the excited state of projectile and target in the eikonal formalism gave

considerable improvement to the multiplicity distribution (see. Sec. IIIA).

Diffraction dissociation is treated with a strict kinematic cutoff M2
x/s < 0.1, which follows

from considerations on coherence and diffractive particle production [36]. The net effect is

that the quasielastically scattered protons do not lose more than ∼ 20 % at maximum

in diffraction dissociation at this energy. The diffractively dissociating particle undergoes

a phase-space decay if the mass of the excited system is very low. For higher masses,

diffracted particles are divided into two valence components of quark-diquark or quark-

antiquark that are connected by a color string which subsequently fragments. The string

carries the diffracted particle’s momentum and quantum numbers and does not create extra

pT . The one-string decay threshold is set to ∆M = 0.7 GeV, where ∆M is the mass

difference of the incoming particle and the excited state of it.

Diffractively excited states of a mass of more than 10 GeV are considered as being pro-

duced by a Pomeron-hadron interaction. The decay of these states is described with multiple
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soft and hard interactions by generating a π-p interaction at
√

s = ∆M , as motivated by

data from the UA4 Collaboration [37].

E. Nucleus interactions

The physics framework for the hadron-nucleus and nucleus-nucleus interactions remains

the same in the new version. The difference in the cross sections between the versions comes

from the improvements made to the hadron-hadron interactions. Detailed descriptions can

be found in Ref. [1] for the hadron-nucleus interaction and Ref. [12] for the nucleus-nucleus

interaction. Here, we summarize the basic concepts for the sake of completeness.

The interaction length is calculated from the production cross section. Elastic and

quasielastic interactions, where no new particles are produced, do not contribute to the

air shower development and are not considered. The production cross section, i.e. contribu-

tion to particle creation, for a hadron-nucleus (hA) interaction where A is the mass number

of the nucleus is

σhA
prod = σhA

tot − σhA
el − σhA

qe , (26)

with σhA
tot , σhA

el , and σhA
qe being the total, elastic, and quasielastic cross sections, respectively.

They are calculated within the Glauber model [11] from the p-p, π-p, and K-p cross sections.

The inelastic and total cross sections of p-p, p-air and π-air, π-p collision are shown in Fig. 4.

The minijet cross sections are also shown.

In a hadron-nucleus interaction, the number of target nucleons directly participating in

the interaction, also known as wounded nucleons, is determined from the production cross

section. The mean number 〈Nw〉 of wounded nucleon per interaction is given by standard

Glauber theory. In analogy with Eqs. (15) and (16), one finds

〈Nw〉 =
1

σhA
prod

∑

Nw

NwσNw
=

A σhp
inel

σhA
prod

, (27)

where σNw
is the cross section for interaction with Nw nucleons and σhp is the hadron-nucleon

cross section.

The string model is applied to the fragmentation of the partonic system as well. The

target nucleus is seen as Nw pairs of valence q-qq, and the projectile hadron is viewed as one

valence q-q̄ or q-qq pair and Nw−1 sea q-q̄ pairs. The Nw color-connected partons undergo

string fragmentation. Most of the energy is carried by the valence pair string, and the
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FIG. 4: The total and inelastic cross section of p-air, p-p (left panel) and π-air, π-p (right panel)

collision for version 2.1 (red solid lines) and 1.7 (blue dotted lines). The minijet cross section is

also shown in dashed lines, where the higher one is version 2.1.

sea strings contribute to giving the proper multiplicity in the target region. This happens

because there are more valence quarks on the nucleus side for the sea quarks to couple

to. Intranuclear interactions and Fermi momentum inside the target nucleus are ignored

in sibyll. Intranuclear interactions are greatly suppressed at high energy due to the time

needed for a hadron to form as an independent object (formation time). At high energies,

minijets are added to the collision, by generating them for each of the Nw wounded nucleons

in the same way as in a hadron-hadron interaction.

The nucleus-nucleus interaction is treated with the semisuperposition model [12], which

is between the simple superposition model and full Glauber theory [11]. The superposition

model treats each nucleon of the projectile independently and as a consequence the interac-

tion lengths of the nucleons have an exponential distribution based on the hadron-nucleus

cross section. In reality, the nucleus interaction length is very small and a nucleus will inter-

act quickly in the atmosphere. In the semisuperposition model, the number of interacting

nucleons in the projectile for each nucleus interaction is determined from Glauber theory,

where the remaining spectator nucleons fragment into lighter nuclei. Though the interac-

tion and fragmentation is treated as a nucleon-nucleus interaction, the distribution of these

nucleon-subshowers reflects correctly the nucleus-air cross section.
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III. COMPARISON WITH EXPERIMENTAL DATA

Both fixed target and collider experiments give valuable guidance in modeling hadronic

interactions. Fixed target experiments provide data for the forward region which are most

relevant to cosmic ray interactions, but the energies are relatively low, Elab ∼ several hundred

GeV. Collider experiments can probe higher energies (Elab ∼ 106 GeV) but most of the

information is collected in the central region. Some collider experiments such as H1 and

ZEUS are able to detect forward events [38]. The anticipated experiments LHCf [39] and

TOTEM [40] in the LHC at CERN are expected to collect information in the forward region

at an energy equivalent to cosmic rays of Elab ∼ 108 GeV.

A. Charged particle multiplicities

Pions are the most numerous particles, followed by kaons and baryons. There is overall

good agreement with experimental data in the forward region at low energies. The difference

of charged particle production between the two versions is due to the improved treatment

of multiple soft interactions, usage of GRV parton densities, and a consistent inclusion of

diffraction dissociation, which also leads to more minijet production. These improvements

give a better agreement with data for version 2.1, especially in the central region.

The NA49 experiment measured the rapidity y and Feynman xF distribution of charged

particles for p-p [41] and p-C [42] collisions at Elab = 158 GeV. Figure 5 shows the sibyll

results compared to the data for π+ and π−, which became available only after the event

generator had been released. Good agreement between model predictions and data is found.

The excess of π+ over π− is due to the flavor content of the proton (uud). In version 2.1, this

discrepancy is stronger and more particles are produced in the central region which reflects

the changes made to the soft interaction. However, the difference between the two versions

is small in this respect.

Fixed target experiments at FNAL used π+, K+, p as projectiles and p, C for targets.

The inclusive cross section Ed3σ/dp3 for each charged particle species has been measured at

Elab = 100 GeV at a given pT [43]. The results for π+π− production at pT = 0.3 GeV/c are

plotted in Fig. 6. The inclusive cross section of version 2.1 is slightly lower than version 1.7,

and gives an overall better agreement. For the pion projectile, π+s are overproduced while
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FIG. 5: The Feynman x (xF ) and rapidity (y) distribution of pions plotted against NA49 result of

p-p [41] and p-C [42] collision at Elab = 158 GeV. Version 2.1 (1.7) results are shown in red solid

(blue dotted) lines. The left (right) panels show the production of π+ (π−). The upper panels

show the xF distribution, where the p-C collision results are multiplied by factor 10 in order to

show both interactions on the same plot. The lower panels show the y distribution: the upper

(lower) set of lines and data points are from the p-C (p-p) collision.

π−s are underproduced in the forward region, indicating the role of the valence components

in determining the leading particle. The kaon projectile shows an overall good agreement

for version 2.1. For the proton projectile, there is an overproduction of π−s compared to

data, especially in the forward region.

Pseudorapidity (η) distributions of charged particles from collider experiments are com-
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FIG. 6: Inclusive cross sections of π+-p,C (left panels), K+-p,C (center panels), p-p,C (right

panels) collisions for π+ (upper panels) and π− (lower panels) production, where the events have

pT = 0.3 GeV. Collision energy is Elab = 100 GeV, and are compared with results from a FNAL

fixed target experiment [43]. Version 2.1 (1.7) results are shown in red solid (blue dotted) lines.

pared with sibyll in Fig. 7. It shows the η distribution of charged particles from p-p̄

collisions at Ec.m. = 1800 GeV (CDF [44]), 630 GeV (P238 [45]), 200 GeV (UA5 [46]) and

53 GeV (UA5 [47]). The improvements made to version 2.1 most prominently show in the

central region. The role of the minijets and soft interactions is visible in the central region,

where version 1.7 lacks secondary particles especially as the energy increases, while hav-

ing more particles in the peripheral region. This trait can be seen at low energies in the

pp → π+, π− figures in Fig. 6. Version 2.1 gives an excellent description of P238 data and

tends to slightly overestimate the particles at low energies. It should be noted that the η

range and trigger condition for 53 GeV is different than for higher energies at UA5. The two

versions are similar for events with large |η| beyond the scope of current collider detector

measurements.

The distributions of charged particle multiplicity at UA5 [48] also give information at

higher energies. Figure 8 shows the distribution of charged particle multiplicity for p-p̄
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FIG. 7: Pseudorapidity (η) distribution of p-p̄ collision, for various c.m. energies, for version 1.7

(left panel) and 2.1 (right panel) Data points from top are Ec.m. = 1800 GeV [44], 630 GeV [45],

200 GeV [46], 53 GeV [47]. Note the deficit of charged particles in version 1.7 at high energies in
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FIG. 8: Probability of charged particle multiplicity (nch) distribution at UA5 detector with Ec.m. =

900 GeV for three different η ranges; |η| < 0.5 (×0.01), |η| < 1.5, |η| < 3 (×100) [48] for version

2.1 (red solid lines) and 1.7 (blue dotted lines). The two sets of line are for having a stable and

decaying K0
s .
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collision at Ec.m. = 900 GeV, at three different η ranges |η| < 3.0, 1.5, 0.5, where the

results for |η| < 3.0 have been multiplied by 100 and |η| < 0.5 by 0.01 for clarity while

plotting. The particle K0
s has a very short lifetime and its decay produces charged particles

that have a non-negligible effect, especially at high multiplities. The treatment of K0
s is

considered as one of the uncertainties in the interpretation of the experimental data. Both

stable and unstable cases are plotted, which can be considered as an error band. The

improvements made in soft interaction and diffraction in version 2.1 are evident in the wider

distribution of nch as well as in the increase in multiplicity. An underestimation of the cross

section for double diffraction dissociation in sibyll is probably the reason for the lack of

low-multiplicity events satisfying the UA5 trigger condition.

B. Leading particle

The leading particle from the fragmentation carries a significant fraction of the total

energy and becomes the primary particle in the next interaction of the air shower. The

elasticity K = Elead/Eproj, the fraction of the leading particle with respect to the collision

energy, of a collision affects the multiplicity as well as the speed of shower development in

the atmosphere. Thus it is important to get a correct description of the behavior of the

leading particles.

The NAL bubble chamber experiment has data for p-p interactions at Elab = 102, 205,

303, 405 GeV and measured the xF of the leading proton [49]. Figure 9 shows the sibyll

results plotted against the NAL data. The sharp dip at xF ≈ 0.9 for the old version indicates

the abrupt onset of diffraction, which is softened for version 2.1. It is not a smooth turn-on

however, with the switch-on evident from the small step around xF = 0.8.

The ZEUS detector measured the leading proton [50] with small transverse momentum.

ZEUS collided positrons with protons, where the proton energy was 820 GeV during run

I. The c.m. collision energy is about 300 GeV. A virtual photon emitted from the positron

interacts with the proton. The ZEUS Collaboration has confirmed that the initial projectile

gives little effect [51] on the outcome. As sibyll cannot have a photon or positron projectile,

we simulated a p-p collision at a slightly lower energy of Ec.m. = 210 GeV and used events

from one hemisphere, i.e. events with pc.m.
z > 0. Figure 10 shows the leading protons of the

sibyll results plotted against the ZEUS data. They are plotted as a function of xlab = E/Ep,
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FIG. 9: Distribution of leading protons as a function of xF compared to the p-p collision data from

the NAL bubble chamber [49]. Version 2.1 (1.7) results are shown in red solid (blue dotted) lines.

The results and datapoints have been multiplied by factor of tens (405 GeV by 1000, 303 GeV by

100, 205 GeV by 10, 102 GeV by 1).

the energy of the proton or neutron divided by the colliding proton energy in the lab frame,

which is essentially the elasticity. The leading proton displays similar behavior to that of the

NAL bubble chamber. Again, the better diffraction treatment is evident around xlab = 0.9.
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FIG. 10: Leading proton distribution of sibyll compared to the low-Q2 [beam pipe calorimeter

(BPC)] and higher-Q2 [deep inelastic scattering (DIS)] ZEUS data [50, 51]. Version 2.1 (1.7)

outcome is shown in red solid (blue dotted) lines. The transverse momentum of the protons are

limited to p2
T < 0.5 GeV2. The c.m. collision energy of sibyll is 210 GeV.

C. Strange particle production

A FNAL fixed target experiment measured the production of very forward strange par-

ticles produced in p-Be collisions at Elab = 300 GeV [52]. The inclusive cross section of Λ0

and K0
s have been plotted for angles in the range θ = 0.25 − 8.8 mrad in Fig. 11. As these

are very forward direction measurements, particles with large pz are likely to be from par-

ticle production associated with the projectile, and particles with small pz are from central

production. Both sibyll versions give agreements in the forward direction, with a tendency

to slightly overproduce high-pz particles and underproduce low-pz particles. Strange particle

production directly affects production of high energy muons and neutrinos.

IV. AIR SHOWER PERFORMANCE

The development of an air shower depends on a number of factors, some of which are

the production cross section, inelasticity, and multiplicity. For the description of the air
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FIG. 11: Inclusive cross sections of Λ0 (left panel) and K0
s (right panel) production from p-Be

collision at Elab = 300 GeV for various angles [52]. Version 2.1 (1.7) results are shown in red solid

(blue dotted) lines. From the top, the sets of lines and data are for angles 0.25, 1.5, 2.9, 5.0, 6.9,

8.8 mrad. The results and data have been multiplied by factors of tens to show them in one figure

(0.25 mrad by 105, 1.5 mrad by 104, 2.9 mrad by 103, 5.0 mrad by 100, 6.9 mrad by 10, 8.8 mrad

by 1).

shower development the hadronic interaction model has to describe correctly the particle

interactions in a wide range of energies. Observables such as depth of shower maximum Xmax,

electron number Ne and muon number Nµ at ground will depend on the characteristics of

hadronic interactions1. We briefly summarize how air showers are affected by those three

parameters.

Increasing the cross section will cause the shower to start earlier in the atmosphere, re-

sulting in a smaller Xmax as well as a smaller fluctuation. The number of electrons measured

is highly dependent on the position of the shower maximum; the closer to Xmax the larger

1 Extensive studies have been carried out in Ref. [53], where cross sections, elasticity, and multiplicity are

varied to see the effect on observables such as Xmax, Ne and Nµ.
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FIG. 12: The mean Xmax of protons and iron nuclei as a function of primary energy at zenith

angle θ = 45◦. In the case of sibyll (red solid lines), qgsjet II-3 (orange dot-dashed lines), and

epos 1.61 (black dashed lines), the data are taken from the hybrid simulator CONEX [54, 55] with

statistical uncertainly of typically 1−3 g cm−2. For sibyll 1.6 (blue dotted lines), 500 events were

simulated with Corsika 5.62 [56] (from Ref. [57]) with statistical uncertainty of 1−4 g cm−2.

the Ne. As most muons are produced from decay of pions and kaons, Nµ is expected to

remain stable.

An increase in the mean multiplicity lessens the energy per particle of the secondaries,

which results in a quicker development of the shower with smaller fluctuations. The in-

creased multiplicity is expected to increase Nµ. The number of electrons are most numerous

at Xmax and decreases away from it. Hence, a quicker development results in a larger dis-

tance between Xmax and ground which will contribute to decreasing the number of electrons

detected on ground.

A large elasticity gives a larger fraction of the total energy to the leading particle, and

slows the shower development as well as giving a smaller multiplicity. The Xmax will be

closer to the ground and Nµ will be smaller. The closer proximity of Xmax to the ground

causes a larger Ne despite the smaller multiplicity [53].

23



The new version has the shower developing more quickly than the old version. The two

versions are compared with qgsjet II-3 [58] and epos 1.6 [59]. The shower maximum is

shown in Fig. 12. sibyll 2.1 has an increased cross section and larger multiplicity which

results in a smaller Xmax overall but maintains the same shape. qgsjet II-3 has a very

large multiplicity at high energies, resulting in smaller shower maximum.

The muon number is an important indicator for cosmic ray composition studies, as show-

ers of heavier nuclei contain more muons than that of protons. Version 2.1 produces more

muons than version 1.7, which cause the new version of sibyll to extract a lighter cosmic

ray composition from experimental data than the old one. However, both versions produce

fewer low energy muons than other models such as qgsjet II-3 or epos 1.6. The muon

number at sea level is sensitive to zenith angle. When the atmosphere depth increases,

muon production and muon energy loss and decay compete against each other. For low

muon energies, the decay process is dominant and Nµ decreases as increasing zenith angle.

At sufficiently high energies above ∼ 10 GeV, most muons do not decay and Nµ increases.

Figure 13 shows the energy dependence of the average number of muons normalized to the

primary energy for the two versions of sibyll. The average number of muons at sea level

(〈Nµ〉) is plotted with energies above Ethr
µ =0.3, 1, 3, 10 and 30 GeV in proton-initiated

showers at zenith angle θ = 0◦.

V. SHORTCOMINGS AND FUTURE IMPROVEMENTS

Though many features have been improved, sibyll 2.1 is by no means a complete model.

We list the shortcomings of the current version and describe how we plan to improve the

model.

• The current nucleus-nucleus collision uses the semisuperposition model. Implementing

the full Glauber model will give a more accurate description.

• Antibaryon production is not satisfactorily described. There is not enough produced

and the distribution of antiprotons in the central region is incorrect compared with

data [61]. The overall normalization can be improved by increasing the diquark produc-

tion fraction. The current method of fragmentation suppresses antibaryon formation

together with other particles in the non-end of strings.
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FIG. 13: Average number of muons at sea level 〈Nµ〉, obtained in proton showers with zenith

angle θ = 0◦. Each energy represents 5000 showers simulated with the hybrid method. The solid

(dotted) line represents the values obtained with sibyll 2.1 (sibyll 1.7). Panels (a)-(c) show the

average number of muons with energy above 30, 3 and 0.3 GeV respectively. Figure is adapted

from Fig. 14 of Ref. [60].

• The currently used energy-dependent transverse momentum cutoff is independent of

the relevant gluon density of the interaction with the target nucleus, which varies with

the impact parameter of the collision. A new energy- and impact parameter-dependent

cutoff to pT to prevent parton density saturation would improve the modeling. Refer-

ence [62] is an example of an attempt to constrain minijet formation. In addition the

profile functions could also be more refined.

• A consistent treatment of coherent and incoherent diffraction dissociation in hadron-

nucleus and nucleus-nucleus interactions is required. This can be achieved by using

a two-channel model in the Glauber calculation similar to the one presented here for
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p-p interactions.

• Include charm quark. The current model has u, d s quarks and gluons. This im-

provement will be relevant more to muon and neutrino detectors than cosmic ray

observations. A version containing charm will be released soon.

VI. CONCLUSION

In this paper, we described the overall model of sibyll together with the changes made

in the version 2.1, and listed the shortcomings and possible ways of improving the model.

The 2.1 version still keeps the DPM-minijet structure but with modifications and additions.

Results from HERA suggest a steeper parton density for gluons at low x, and the GRV

parton densities replaced the EHLQ parton densities which resulted in an increased QCD

cross section. Concepts from Regge theory are used to allow multiple soft interactions. The

energy-dependent transverse momentum cutoff for ensuring perturbative QCD to be valid

is a better discriminator between soft and hard interactions than the previously applied

energy-independent cutoff. The two-channel eikonal model is used to describe diffraction,

with better if not complete success. The physics framework for the hadron-nucleus and

nucleus-nucleus interactions remains unchanged.

These improvements produce more particles with a wider distribution in momentum

space, as are evident when comparing with experimental data. Both versions give a good

fit to the rapidity and Feynman x distribution for fixed target experiments such as NA49.

However the changes made to the new version are very evident in the central region, in the

pseudorapidity and the overall charged particle multiplicity distribution. As a consequence,

air showers described with sibyll 2.1 develop quicker, with smaller shower maximum and

larger muon number than version 1.7.

sibyll 2.1 is by no means the final answer. There are still shortcomings, such as un-

satisfactory description of antibaryon production, and further room for improvements in

preventing parton density saturation by giving an energy-dependent cutoff to the transverse

momentum, giving a better diffraction treatment and have a full Glauber model for nucleus-

nucleus interaction. A version including charm quark production is due to be released

shortly.

With all its advantages and shortcomings, the interaction model sibyll 2.1 is able to
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successfully reproduce and predict many experimental data. We believe there that use of

sibyll in comparison with other models would be valuable in analysis of cosmic ray air

shower data.
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APPENDIX A: AMPLITUDE CONVENTIONS

The conventions and parameters are adopted from Ref. [26]. The Mandelstam variables

s, t, u are used, and k is the c.m. momentum. The c.m. scattering angle θ is related to t by

t = −4k2 sin2(θ/2) , (A1)

and a new parameter is defined −q2 ≡ t. The scattering amplitude in the c.m. frame

[fc.m.(s, t)] and the Lorentz invariant scattering amplitude [M (s, t)] are related by

M (s, t) = −8π
√

s fc.m.(s, t) . (A2)

The scattering amplitude fc.m.(s, t) and impact parameter function a(s,b) are Fourier
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transforms of each other via

fc.m.(s, t) =
k

π

∫

d2b eiq·b a(s,b) , (A3)

a(s,b) =
1

4πk

∫

d2q e−iq·b fc.m.(s, t) . (A4)

With this scattering amplitude, the differential elastic cross section can be expressed as

dσel

dΩc.m.
= |fc.m.|2 , (A5a)

dσel

dt
=

π

k2
|fc.m.|2 , (A5b)

σtot =
4 π

k
Imfc.m.(θ = 0) , (A5c)

where the last relation used the optical theorem. The elastic slope parameter Bel is defined

from an approximation of the elastic scattering cross section in small t region as

dσel

dt
=

[

dσel

dt

]

t=0

eBt . (A6)

Using Eqs. (A5a) and (A5b),
[

dσel

dt

]

t=0

=
π

k2

[

dσel

dΩc.m.

]

θ=0

= π

∣

∣

∣

∣

(ρ + i) Imfc.m.(0)

k

∣

∣

∣

∣

2

= π

∣

∣

∣

∣

(ρ + i) σtot

4 π

∣

∣

∣

∣

2

,

(A7)

where ρ is the real to imaginary ratio of fc.m.(0).

When using eikonals, the cross sections follow the usual convention:

σtot = 2π

∫

db2(1 − e−χ(b,s)) (A8)

σel = π

∫

db2(1 − e−χ(b,s))2 (A9)

σinel = π

∫

db2(1 − e−2χ(b,s)) . (A10)

We neglect the real part of the elastic scattering amplitude for calculating the eikonal func-

tions.

APPENDIX B: HARD INTERACTION MINIJET CROSS SECTION AND PRO-

FILE FUNCTIONS.

Each proton or meson is characterized by a (transverse) density profile function Az(b),

where z can be p, π, K. The probability for the two partons in particles y and z to collide
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is found by integrating over all possible impact parameters b1 and b2 for a given impact

parameter b of the collision

Ahard
yz (νy, νz,b) =

∫

d2b1d
2b2 Ay(νy,b1) Az(νz,b2) δ(2)(b1 − b2 − b) . (B1)

The profile function of a proton is given by

Ap(νp,b) ≈ 1

(2π)2

∫

d2kT

(

1 +
k2

T

ν2
p

)−2

eikT·b

= νp |νpb|K1(|νpb|) (B2)

with ν2
p ≈ 0.71 (GeV/c)2. The profile function of a meson is

Am(νm,b) =
1

(2π)2

∫

d2kT

(

1 +
k2

T

ν2
m

+ η

(

k2
T

ν2
m

)

+

)−1

eikT ·b , (B3)

where νm and η are adjustable parameters. For pions, ν2
π ≈ 0.54 (GeV/c)2 and η ≈ 0. Hence

the profile function for a pp interaction is

Ahard
pp (νp,b) =

∫

d2b′ Ap(|b− b′|) Ap(|b′|)

=
ν2

p

12π

1

8
(νpb)

3 K3(νpb) , (B4)

and for a pπ interaction

Ahard
pπ (νp, νπ,b) =

ν2
p

2π

1

(1 − ζ)

[

νpb

2
K1(νpb) +

ζ

1 − ζ
[K0(νπb) − K0(νpb)]

]

, (B5)

where ζ = (νp/νπ)2. The profile functions are normalized to

∫

d2bAhard
yz (νp, νπ,b) =

∫

d2bAy(νm,b) = 1 (B6)

APPENDIX C: DIFFRACTION DISSOCIATION

In low-mass diffraction, the two-channel eikonal model is used [15, 35]. Only two states

are considered here; a nondiffractive state and a generic diffractive state denoted ⋆. The
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diffractive scattering of particles Y and Z can be expressed in the following matrix elements

〈Y Z|M int|Y Z〉 = M
Born (C1a)

〈Y Z|M int|Y ⋆Z〉 = βY M
Born (C1b)

〈Y Z|M int|Y Z⋆〉 = βZ M
Born (C1c)

〈Y Z|M int|Y ⋆Z⋆〉 = βY βZ M
Born (C1d)

〈Y ⋆Z|M int|Y ⋆Z〉 = (1 − 2αY ) M
Born (C1e)

〈Y Z⋆|M int|Y Z⋆〉 = (1 − 2αZ) M
Born (C1f)

〈Y ⋆Z⋆|M int|Y ⋆Z⋆〉 = (1 − 2αY ) (1 − 2αZ) M
Born . (C1g)

The coefficients α and β may depend on energy. A matrix χ̂(s,b) for the eikonal χ is

introduced to calculate M . The eikonal matrix is diagonalized, and the cross sections

calculated. The hadronic states Y and Z are defined as

|Y, Z〉 ∼















1

0

0

0















, |Y ⋆, Z〉 ∼















0

1

0

0















, |Y, Z⋆〉 ∼















0

0

1

0















, |Y ⋆, Z⋆〉 ∼















0

0

0

1















. (C2)

The eikonal matrix reads

χ̂(s,b) =















1 βY βZ βY βZ

βY 1 − 2αY βY βZ βZ (1 − 2αY )

βZ βY βZ 1 − 2αZ βY (1 − 2αZ)

βY βZ βZ (1 − 2αY ) βY (1 − 2αZ) (1 − 2αY ) (1 − 2αZ)















χ(s,b) . (C3)

After diagonalizing χ̂(s,b), the cross sections can be calculated. The total cross section is

given by

σtot
Y Z = 2

∫

d2b 〈Y Z|
(

1 − e−χ̂(s,b)
)

|Y Z〉

= 2

∫

d2b

∞
∑

n=1

f el,n
Y f el,n

Z (−1)n−1 (χ(s,b))n

n!
, (C4)

where

f el,n
j = (1 − αj

γj
)(1 − αj − γj)

n + (1 +
αj

γj
)(1 − αj + γj)

n , (C5)
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and

γj =
√

α2
j + β2

j j = Y, Z . (C6)

Consequently the elastic cross section reads

σel
Y Z =

∫

d2b

∣

∣

∣

∣

∣

∞
∑

n=1

f el,n
Y f el,n

Z (−1)n−1 (χ(b, s))n

n!

∣

∣

∣

∣

∣

2

. (C7)

The cross section for single diffraction dissociation of particle Y follows from

σSD,Y
Y Z =

∫

d2b
∣

∣〈Y ⋆Z|
(

1 − e−χ̂(b,s)
)

|Y Z〉
∣

∣

2

=

∫

d2b

∣

∣

∣

∣

∣

∞
∑

n=1

fdiff,n
Y f el,n

Z (−1)n−1 (χ(b, s))n

n!

∣

∣

∣

∣

∣

2

, (C8)

using

fdiff,n
j =

√

γ2
j − α2

j

2γj
[(1 − αj + γj)

n − (1 − αj − γj)
n] . (C9)

Finally the expression for double diffraction dissociation is given by

σDD
Y Z =

∫

d2b
∣

∣〈Y ⋆Z⋆|
(

1 − e−χ̂(b,s)
)

|Y Z〉
∣

∣

2

=

∫

d2b

∣

∣

∣

∣

∣

∞
∑

n=1

fdiff,n
Y fdiff,n

Z (−1)n−1 (χ(b, s))n

n!

∣

∣

∣

∣

∣

2

. (C10)

Note that after carrying out the sum over n in Eqs. (C4), (C7), (C8), (C10) the cross sections

can be written as impact parameter integrals over a sum of exponentials.

The parameter range for αj and βj is limited by the unitarity constraint that all eikonal

functions have to be non-negative

1 − αj − γj ≥ 0 αj < 1/2 βj > 0 . (C11)

A good description of the data is found for α = 0.2 and β = 0.5.

The partial cross sections for Ns soft and Nh hard interactions follow from

σNs,Nh
=

∫

d2b

4
∑

k=1

Λk
[2λkχsoft(s,b)]Ns

Ns!

[2λkχhard(s,b)]Nh

Nh!
exp {−2λk(χsoft(s,b) + χhard(s,b))} ,

(C12)
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with

Λ1 =

(

1 − αY

γY

) (

1 − αZ

γZ

)

Λ2 =

(

1 − αY

γY

) (

1 +
αZ

γZ

)

Λ3 =

(

1 +
αY

γY

)(

1 − αZ

γZ

)

Λ4 =

(

1 +
αY

γY

)(

1 +
αZ

γZ

)

(C13)

and

λ1 = (1 − αY − γY )(1 − αZ − γZ)

λ2 = (1 − αY − γY )(1 − αZ + γZ)

λ3 = (1 − αY + γY )(1 − αZ − γZ)

λ4 = (1 − αY + γY )(1 − αZ + γZ) . (C14)

For high-mass diffraction, it is assumed that a constant fraction of each cut (soft or hard

interaction) corresponds to an rapidity-gap final state. The corresponding cross section is

written, see Eq. (C12)

σSD
hm = δ (σ1,0 + σ0,1) , (C15a)

σDD
hm = δ2 (σ1,0 + σ0,1 + σ1,1) + β2

Y σSD,Z
lm + β2

ZσSD,Y
lm . (C15b)

The factor δ is estimated by comparing with HERA data: 10% of all deep inelastic scattering

events at low x correspond to diffraction (δ ≈ 0.1). The last two terms in Eq. (C15b)

represent the cross section for low-mass – high-mass double diffraction dissociation.

34


